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Kohn–Sham density functional theory (KS-DFT) is nowadays the most widely used quantum chemical
method for electronic structure calculations in chemistry and physics. Its further application in
e.g. supramolecular chemistry or biochemistry has mainly been hampered by the inability of almost all
current density functionals to describe the ubiquitous attractive long-range van der Waals (dispersion)
interactions. We review here methods to overcome this defect, and describe in detail a very successful
correction that is based on damped −C6·R−6 potentials (DFT-D). As examples we consider the
non-covalent inter- and intra-molecular interactions in unsaturated organic molecules (so-called p–p
stacking in benzenes and dyes), in biologically relevant systems (nucleic acid bases/pairs, proteins, and
‘folding’ models), between fluorinated molecules, between curved aromatics (corannulene and carbon
nanotubes) and small molecules, and for the encapsulation of methane in water clusters. In selected
cases we partition the interaction energies into the most relevant contributions from exchange-repulsion,
electrostatics, and dispersion in order to provide qualitative insight into the binding character.

1 Introduction

Non-covalent interactions are playing an increasingly important
role in modern chemical research and are considered as corner-
stones in supramolecular chemistry, materials science, and even
biochemistry.1–6 Although a very detailed understanding on an
atomic or molecular level is still lacking, important progress
has been achieved in recent years in the quantum-mechanical
description of the relevant forces.7 Nowadays, the accurate compu-
tation of structures and interaction potentials for small molecular
complexes (<10 atoms) with wave-function-based methods like
second-order Møller–Plesset perturbation theory (MP2)8,9 in
combination with coupled-cluster methods (e.g. CCSD(T)10) has
become possible (see e.g. the reviews by Sherrill,11 Tzusuki,12 or
Hobza13 et al.). Using these ab initio techniques, even notoriously
difficult systems with dominant van der Waals (vdW, dispersion)
contributions such as dimers of aromatic molecules (of so-called
p–p stacked or CH–p type, for overviews see refs. 2,14) can be
investigated. Dispersion interactions are ubiquitous, long-range
attractive forces which act between separated molecules even in
the absence of charges or permanent electric moments. They stem
from many-particle (electron correlation) effects that are compli-
cated by the quantum-mechanical wave-nature of matter.7,10,15

The interactions between aromatic groups in DNA and RNA
and between aromatic side chains in proteins are significantly
influenced by vdW forces.16–18 A further improved understanding
of non-covalent interactions and an even more accurate de-
scription would greatly aid the rational synthesis of functional
supramolecular structures or drug design, e.g. for anti-cancer
agents that intercalate into DNA, also in a p–p stacking mode.19

Currently, the benzene dimer as a model system is being extensively
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investigated in this context, and at least four high-quality ab initio
studies have appeared within the last year.20–23

However, accurate ab initio-correlated wavefunction methods
are computationally too demanding for routine studies of the non-
covalent interactions in larger (>50 atoms), chemically interesting
systems. Using special techniques, perturbation methods can be
used nowadays for complexes of about 100 atoms, as recently
shown for a C60–tetraphenylporphyrin single point calculation.24

In particular, there is great need for effcient and robust quantum-
mechanical approaches that allow structure optimization. Such
structural information usually forms the basis for a deeper
understanding of the system’s functionality but is often difficult to
obtain experimentally.

Kohn–Sham density functional theory25 (KS-DFT) is now the
most widely used method for electronic structure calculations in
condensed matter physics and quantum chemistry.26,27 This success
mainly results from significant ‘robustness’, i.e., providing reason-
ably accurate predictions for many properties of various molecules
and solids at affordable computational expense. However, a
general drawback of all common density functionals, including
hybrids like the popular B3LYP, is that they can not describe long-
range electron correlations that are responsible for the dispersion
forces.28–30 The DFT problem for vdW interactions now has
become a very active field of research and therefore, we will provide
a summary of the most recent approaches in Section 2.2. From
the practical point of view, where the focus is on robustness and
computational speed, empirical −C6·R−6 corrections to standard
density functionals seem most promising. The most widely applied
and very well-tested approach is DFT-D,31,32 which provides high
accuracy in many different situations.33–37

A review and general perspective of the DFT-D method in a
variety of different applications is the main aim of this paper,
which is organized as follows. In Section 2 we present a brief and
qualitative description of the theory of non-covalent interactions.
We explain in some detail the problems of KS-DFT with vdW
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interactions and outline possible solutions to the problem. After a
short review of the DFT-D method in Section 2.4 we discuss some
more technical aspects of the computations that are necessary
to follow and understand this paper. The Results and discussion
section is split into four parts. First, we decompose the interaction
energies for model complexes into physically meaningful compo-
nents and show that the empirical dispersion correction used has
a very solid physical basis. We then compare DFT-D results for
a set of vdW and hydrogen-bonded complexes to coupled-cluster
reference data in order to get some impression about the accuracy
of the methods. The chemical examples are grouped into intra- and
intermolecular cases and have been selected to cover a broad range
of problems in organic or supramolecular chemistry. We consider
p-stacking in triptycenes and in the anthracene dimer, folding of
alkane chains, complexes of small molecules with the bowl-shaped
corannulene and carbon nanotubes, dimers of organic dyes, and
the formation of methane hydrates.

2 Theory

2.1 General

Although there is no rigorous quantum-mechanical definition
of non-covalent interactions, there is common understanding

about an operational definition.7 The relevant molecular or
atomic fragments are separated by distances where the overlap
of one-electron functions (orbitals) is so small that the covalent
(quantum-mechanical interference) or charge-transfer character
of bonding is negligible. There are of course borderline cases
where the classification (non-covalent vs. covalent/ionic) strongly
depends on the method used for analysis, but all examples
presented here are uncritical in that respect (for a more detailed
discussion about bonding in such problematic cases the reader is
referred to the recent review of Popelier38).

The term non-covalent interaction (sometimes also misleadingly
called non-bonded in the force-field community) is usually associ-
ated with the formation of weakly bonded complexes, aggregates,
or even condensed phases from separable (individual) units A and
B (intermolecular case, see top of Fig. 1).

This situation is also theoretically most simple because the
interaction energy DE can easily be computed from the complex
and fragment total energies (supermolecular approach)

DE = E(AB) − E(A) − E(B). (1)

A perturbational view can also be appropriate in this case, which
leads to a more detailed picture of binding. If two separate
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Fig. 1 Non-covalent interaction modes between molecular units or
fragments A and B in the inter- (top) and intramolecular case (bottom).

Hamilton operators for fragments A and B and a Coulombic
interaction term V̂ as a perturbation are defined,

Ĥ = Ĥ(A) + Ĥ(B) + V̂ (AB), (2)

and the Pauli-principle (anti-symmetry with respect to inter-
electronic permutations) is obeyed, the resulting method is called
symmetry-adapted perturbation theory (SAPT).39 SAPT results
are considered in more detail in Section 3.1. Note, however, that
a very important class of non-covalent interactions occurs in
an intramolecular fashion (Fig. 1, bottom), e.g. base-stacking in
DNA/RNA or protein folding. It is quite clear that the interaction
between fragments or groups A and B is not fundamentally
different if they form a complex from two separated entities or
if they are e.g. connected by a flexible and chemically inert alkane
chain. In practice it seems highly desirable to have theoretical
methods that treat inter- and intramolecular cases on an equal
footing. For example, SAPT does not belong to this class because
V̂ can not be regarded as a perturbation in the intramolecular case
(and also the popular counterpoise correction is not defined; see
Section 2.4).

Nevertheless, SAPT is very useful as it provides a solid
theoretical basis for qualitative understanding and classification of
non-covalent bonding. In the simplest picture, one can distinguish
three dominant types of non-covalent interactions. The exchange
repulsion (EXR) term stems from the Pauli or anti-symmetry
principle, i.e., electrons with the same spin can not occupy the
same region of space. This can be seen in a simple orbital picture
(Fig. 2). The anti-bonding linear combination of the fragment
orbitals (upper level) is always more destabilizing than the bonding
orbital stabilizing, so that in total a repulsive energy contribution
always remains between any closed shells. Because the EXR
mainly involves the overlap between fragment orbitals, it is short-
ranged and decays exponentially with distance. The EXR is quite
accurately described by all theoretical models that treat orbital
overlap exactly, i.e., by Hartree–Fock (HF) and KS-DFT but not
by most semiempirical models (e.g. INDO, MNDO, AM1· · ·) that
absorb EXR empirically into core–core repulsion functions.40

Fig. 2 Closed-shell orbital interaction.

The second part is due to electrostatic interactions (ES). These
can be further decomposed into a purely static (first-order)
term that arises from the unperturbed interactions of the charge
distributions of the fragments, and an induction (second-order)
term that results from polarization of one charge distribution
by the electric moments of the other fragment and subsequent
interaction. The ES terms can be repulsive or attractive depending
strongly on the inter-fragment orientation (e.g. parallel or anti-
parallel dipole moments) and are usually long-range. At short
distances and for not very polar molecules, however, the ES
contributions are often attractive because the nuclear charges are
not fully screened by the electrons and thus, they can attract
the electron density from the other fragment. The interaction
potentials resulting from the ES part are accurately described
by all methods that yield good electron densities (molecular
multipole-moments) and reasonable electric polarizabilities. KS-
DFT methods perform in this respect better than HF (which yields
molecules that are too polar and too unpolarizable). This is the
reason to use a KS-DFT description of the monomers in SAPT
(called SAPT-DFT41–43). An accurate description of the ES effects
is a particular problem for classical force fields that often employ
a crude atomic point-charge model for this purpose and mostly
neglect induction (for the development of polarizable force-fields
see e.g. ref. 44).

Last but not least we must consider the weak but ubiquitous at-
tractions between electron clouds that do not significantly overlap,
arising from instantaneous transition dipoles (where an electron
transiently fluctuates from a filled level to an empty level) on each
system that couple to each other. These dispersion (van der Waals,
vdW) interactions are a quantum-mechanical electron correlation
effect that is completely absent when considering the classical
interactions of separate charge distributions. Their strength can
readily be shown7,15,45 to decrease as R−6 with the separation, R,
of the two systems in the non-overlapping (asymptotic) regime.
When the charge distributions overlap, electron correlation effects
continue to increase in strength, but are then usually smaller than
strong orbital repulsions between filled levels (EXR) that prevent
the systems from approaching closer than their typical vdW radius.
The accurate account of dispersion effects is most difficult in the
quantum-mechanical treatment of non-covalent interactions and
for weakly bonded complexes in particular. Because the dispersion
terms are often of the same size as but of different sign (attractive)
than the EXR, their neglect or insufficient treatment usually leads
to binding that is too weak, or even to no binding at all. Turning it
the other way around, one can define vdW complexes by their
property of being unbound at the (uncorrelated) HF level of
theory.

Because of their non-local (long-range) character, the dispersion
interactions are accurately accounted for only by correlated
wavefunction methods like MP2, CCSD(T), or by fully correlated
methods like quantum-Monte-Carlo,20,46 but constitute a serious
problem for KS-DFT. This aspect of DFT is considered in more
detail in the next section.

2.2 Density-functional-based methods

More than a decade it has been known that the commonly
used density functionals do not describe dispersion interactions
correctly.28–30,47–51 In the following we first want to discuss the
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problems of KS-DFT with the vdW interactions qualitatively,
as schematically outlined in Fig. 3. We then give an overview
of the existing approaches in the literature that try to overcome
these defects. Note that we are just talking about the correlated
part of the interaction which is more-or-less dispersion; all the
other interactions mentioned in the preceding section are of course
accounted for by KS-DFT.

Fig. 3 Sketch of electron densities (dashed lines) resulting from molecular
Coulombic potentials (solid lines) for large intermolecular distances and
the possible interaction modes (exchange of virtual photons leading to
dispersion forces and electron exchange leading to charge-transfer and
covalent interactions). Adapted with small modifications from a recent
talk by P. Pulay.

Due to the Coulomb potential of the nuclei in molecules, the
resulting electron densities (or equivalently the corresponding
wavefunctions) exponentially decay with respect to distance from
e.g. the center of their electronic charge. When molecules (or
groups) start to interact but are separated by large distances (e.g.
>5–10 Å), the electron density between them is approximately the
sum of the fragment densities and is vanishingly small. This is
illustrated in Fig. 3 by the broken arrow that indicates that non-
classical effects like electron exchange (leading to charge-transfer
and covalent interactions) is then more-or-less forbidden due to
the very broad (and also high) ‘tunnelling’ barrier between the
fragments.

More precisely, however, the electron density of the super-
molecule is in fact very slightly different from the sum (in all
regions of space), and thus with the (unknown) exact density func-
tional one can in principle (in agreement with the first Hohenberg–
Kohn theorem52) also compute the correlated part of the interac-
tion energy. With approximate density functionals, however, this
turns out to be extremely difficult because the densities and their
changes are very, very small and furthermore not very specific
with respect to these correlation effects. Fig. 3 also illustrates
that the physics of the dispersion interaction should be described
by exchange of virtual photons stimulated by the fluctuating
(correlated) electrons. By some means, DFT must also account for
this phenomenon by allowing ‘excitations’ in the fragments. This,
however, is out of the range of standard KS-DFT, which does not
contain any information about the necessary virtual orbitals.

Most attempts to correct for the dispersion problem in DFT
can be classified into three groups:

1. Conventional functionals in the generalized gradient approxi-
mation (GGAs) including hybrids or meta-hybrids. Because in real
complexes there often remains a small electron density between
the fragments, adjusted, specially selected or designed density

functionals may account for some dispersion effects. In the last
two years, several such functionals have been proposed.53–57 Note
that these methods usually provide quite large errors for pure vdW
complexes and may often not work equally well for all types of
non-covalent interactions (e.g. they may not provide a consistent
picture of stacking vs. H-bonding in nucleic acid (NA)–base pairs).

2. Special correlation functionals or orbital-based DFT methods.
These methods try to incorporate the basic physics of dispersion
via non-local, orbital-dependent ansatzes.53,58–72 Most of these
approaches are at a quite ‘experimental’ stage and are furthermore
computationally more costly than standard KS-DFT.

3. DFT/molecular mechanics (MM)-based hybrid schemes. The
researchers in this group try to circumvent the inherent problems
with the electron density by empirical dispersion corrections of
the form −C6·R−6 added to existing density functionals.31,73–79

These methods focus on a realistic description of the asymptotics
of the problem. They have been applied successfully in various
contexts.33–36,80–82 The idea originally emerged from Hartree–Fock
calculations.83–86 Our ansatz, called DFT-D,31,32 is also of this type
and is described in more detail in Section 2.3.

In the following, the most important and representative
examples from each of the above-mentioned groups are listed.

Group 1. Becke’s ’half-and-half” functional BH&H repro-
duces binding energies and potential energy surfaces for p-
stacked geometries of substituted benzenes and pyridines, as
well as pyrimidine and DNA bases53 within ±0.5 kcal mol−1 of
MP2 and/or CCSD(T) reference data. This result is presumably
due to error cancellation (as the authors state), and hydrogen
bonding interaction energies are significantly overestimated with
this functional. For vdW complexes of fluorine-containing organic
molecules, only the PBE density functional yields some binding
that is, however, much too weak compared to the quite accurate
MP2 results.87 The X3LYP functional improves the accuracy of
hybrid GGA methods for rare-gas dimers54 and the water dimer88

significantly, but fails qualitatively for stacking47 which contradicts
the original claims of its inventors that it is well-suited for
non-bonded interactions. The Wilson–Levy correlation functional
together with Hartree–Fock exchange reproduces binding trends
for selected rare-gas dimers, isomers of the methane dimer, benzene
dimer, naphthalene dimer, and stacked base-pair structures.55

Some meta-GGAs incorporating kinetic energy density have
been assessed to quantitatively account for dispersion effects.
Zhao and Truhlar89 describe a test of 18 density functionals
for the calculation of bond lengths and binding energies of
rare gas-dimers, alkaline-earth metal dimers, zinc-dimer, and
zinc–rare-gas dimers. The authors conclude, from the combined
mean percentage unsigned error in geometries and energies, that
M05-2X56 and MPWB1K57 are the overall best methods for the
prediction of vdW interactions in the 17 metal and rare-gas vdW
dimers studied. A set of 13 complexes with biological relevance
is considered in a study of newly developed DFT methods, which
give reasonable results for the stacked arrangements in the DNA
base pairs and amino acid pairs, in contrast to previous DFT
methods, which fail to describe interactions in stacked complexes.90

In ref. 91 multi-coefficient extrapolated density functional theory
methods are used to calculate the interaction energy of benzene
dimers. The TPSS and TPSSh functionals92 produce vdW bonds
in ten rare-gas dimers with Z ≤ 36 and correct the overbinding
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of the local spin density approximation.93 Binding energy curves
for the ground-state rare-gas diatomics Ne2 and Ar2 and for the
alkaline-earth diatomic Be2 in reasonable agreement with those
from experiment are found for PBE and TPSS, but they have an
incorrect asymptotic behavior for large internuclear separations.94

Adamo and Barone95 achieved an improved description of He2

and Ne2 interaction potentials, with accurate results for other
properties too, by refitting the Perdew–Wang exchange functional
and using it in a hybrid model called mPW1PW.

Group 2. Langreth and Lundqvist developed a nonlocal corre-
lation energy functional for dispersion interactions.68,70–72,96,97 They
applied it successfully to graphitic systems, polycyclic aromatic
hydrocarbon dimers,98 parallel polymers,99 and benzene dimers.61,62

In ref. 65, vdW interactions in the He and Ne dimers are modelled
within a local-orbital DFT formulation, which is stated to be
suitable for generalization to the case of weakly interacting large
systems.

Range-separated schemes treat electron interactions at short
distances by DFT, while for long distances wavefunction methods
are applied, thereby correcting the incorrect asymptotic behav-
ior of exchange functionals derived from approximate density
functionals.64 Potential curves for alkaline-earth dimers with a
range separated hybrid method with perturbational long-range
correlation corrections offer a dramatic improvement over con-
ventional DFT approaches.63 A short-range gradient-corrected
density functional combined with a long-range coupled-cluster
scheme has been applied to all homo- end heteronuclear rare-
gas dimers of He, Ne, Ar, Kr, and Xe atoms.100 The long-
range-corrected density-functional theory with the Andersson–
Langreth–Lundqvist vdW functional was applied to the calcula-
tion of the p-aromatic interaction of the benzene and naphthalene
dimers.67

Group 3. Elstner et al. extended their self-consistent-charge,
density-functional tight-binding (SCC-DFTB) method by a
damped London-type dispersion formula.73 The C6 coefficients
are derived from atomic polarizabilities. Compared to the unaug-
mented SCC-DFTB method, slight improvement is obtained in
case of H-bonded base pairs, while the performance is changed
qualitatively in case of stacked DNA base pairs relative to MP2
data by providing quite accurate interactions that are not present
originally. In ref. 101, a more extensive testing of the procedure
has been recommended. Wu and Yang75 derived the atomic
C6 coefficients from C6 coefficients for molecule pairs obtained
from dipole oscillator strength distributions. Using four density
functionals and two forms of the damping function, the method is
applied to rare-gas diatomic molecules, stacking of base pairs,
and the conformational stability of polyalanines, with results
comparable to MP2 results in many cases. Scoles and co-workers74

use a hybrid approach in which the dispersion energy is obtained by
a damped multipolar expansion to calculate interaction energies
and structural parameters of the rare gas dimers Ar2 and Kr2,
the water dimer, the benzene dimer, and three metal carbonyls.
The dispersion coefficients are derived from the polarizabilities
and ionization potentials of the interacting molecules. Zimmerli
et al.76 compare the performance of the correction terms and
accompanying damping functions of the three aforementioned
approaches73–75 in combination with different exchange correlation
functionals by application to water–benzene dimer geometries.

Becke and Johnson used a similar method but calculated
the C6 dispersion coefficients specifically for the system under
investigation from the dipole moment of the exchange-hole,77,78

and distributed these coefficients between the atoms. The approach
also uses a different damping function and was subsequently
extended to include C8 and C10 coefficients as well.79 Calculations
with this method and a specially chosen functional for 45 vdW
complexes resulted in remarkably accurate inter-molecular sepa-
rations and binding energies compared to high-level reference
data.81,82

The method of Lilienfeld et al.102–104 is a bit different as it uses
optimized, atom-centered non-local potentials that are normally
used in the context of pseudopotentials for core-electrons. The ap-
plication of this method for modelling attractive long-range vdW
forces is illustrated for argon–argon, benzene–benzene, graphite–
graphite, argon–benzene, ArnKrm (n + m ≤ 4) vdW clusters,
cyclooctatetraene, and the hydrogen bromide dimer (HBr)2. The
approach has also been applied to calculate interaction energies for
polyaromatic hydrocarbon molecules from monocyclic benzene
up to hexabenzocoronene105,106 and the adsorption of Ar on
graphite.107 In contrast to the −C6·R−6 approaches, this dispersion
correction also produces changes in the electronic charge density.
A serious disadvantage is, however, that the potentials do not
show the correct asymptotic R−6 behavior and decay too fast
(exponentially) with interatomic distance.

An MP2/DFT hybrid method to study both bond-
rearrangements and vdW interactions is proposed by Tuma
and Sauer.108–110 The embedding scheme combines, similar to
the ONIOM method,111 MP2 calculations for the reaction site
with DFT calculations for a large extended system, which are
extrapolated to the complete basis set limit and the full periodic
structure, respectively. The approach has been applied to the
protonation of isobutene in zeolites.

2.3 The DFT-D approach

The idea to treat the difficult dispersion interactions classically
and to combine the resulting potential with a quantum chemical
approach (a kind of QM/MM scheme) goes back to the 1970s in
the context of HF theory83,84 (for more recent HF + disp models see
ref. 112,113). The method has been forgotten for almost 30 years
and was rediscovered a few years ago as the DFT problems became
more evident.31,73,75–79 The basic idea of our work was to develop
a robust dispersion correction that can be applied (without any
laborious highly specific fitting procedure) to common standard
density functionals. Concomitantly, the approach should be as
simple as possible, and in particular allow the easy calculation of
energy gradients for efficient geometry optimization, which is one
of the main purposes of the method.

For the dispersion correction in the KS-DFT formalism we use
a slightly modified version32 of the approach described originally
in ref. 31. The total energy is given by

EDFT–D = EKS–DFT + Edisp, (3)

where EKS–DFT is the usual self-consistent Kohn–Sham energy
as obtained from the chosen density functional and Edisp is an
empirical dispersion correction given by

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdmp(Rij). (4)
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Here, Nat is the number of atoms in the system, Cij
6 denotes

the dispersion coefficient for atom pair ij, s6 is a global scaling
factor that only depends on the DF used, and Rij is an interatomic
distance. In order to avoid near-singularities for small R and
electron correlation double-counting effects, a damping function
f dmp must be used, which is given by

fdmp(Rij) = 1
1 + e−d(Rij/Rr−1)

, (5)

where Rr is the sum of atomic vdW radii in the ground state. We
recently determined these radii (taken as the radius of the 0.01 a0

−3

electron density contour from atomic ROHF/TZV computations)
and atomic C6 coefficients for the elements H–Xe. For the pairwise
dispersion coefficients we employ a simple geometric mean of the
form

Cij
6 =

√
Ci

6 Cj
6 . (6)

The interatomic dispersion potential is shown for the two examples
carbon and fluorine in Fig. 4. As can be seen, the damping function
effectively reduces the interactions to zero typically below 200
pm. Asymptotically for large R it approaches unity, and thus the
required R−6 dependence is recovered. At intermediate distances
we get a minimum in the potential that lies usually slightly below
the sum of the corresponding atomic vdW radii, e.g. at about
300 pm for carbon. The potential for the two fluorine atoms looks
qualitatively similar but as the atom is smaller and less polarizable,
the interaction potential is overall smaller and the minimum is
found at shorter distances.

Fig. 4 Dispersion correction (eqn (4)) for two carbon and two fluorine
atoms (s6 = 1.0) separated by a distance R. The solid line shows the
undamped potential for comparison.

2.4 Technical aspects

Non-covalent interactions are typically one to two orders of mag-
nitude smaller per atom pair than covalent or ionic interactions.
Furthermore, the interaction energies are tiny compared to the
total electronic energies of the complex and the fragments that are
used in the super-molecular calculation of the interaction energy.
This has been illustrated with the analogy of attempting to ‘weigh
the captain of a ship by weighing the ship with and without the
captain’. Because the individual energies are necessarily computed
by approximate methods, their shortcomings may then show up

as large errors in computed potentials. In practice we must rely on
the fact that the errors for the individual energy computations
(‘weighings’) are systematic and cancel out when taking the
difference.

When using wavefunction-based methods, one usually considers
one-electron (AO basis set incompleteness) and many-particle
errors (electron correlation treatment). Today’s standard proce-
dure is to perform a series of calculations with AO basis sets
of systematically increasing size (e.g. Dunnings114 correlation-
consistent sets (aug-)cc-pVXZ, X = 2,3,4· · ·) with a computa-
tionally cheap but crude correlation model (typically MP2) and
extrapolate the interaction energies to the complete basis set (CBS)
limit which yields DECBS

MP2. This result is then corrected for higher-
order correlation effects and systematic MP2 errors by a CCSD(T)
calculation with a small basis set and additivity assumptions

DECBS
est.CCSD(T) = DECBS

MP2 − (DEsmall
MP2 − DEsmall

CCSD(T)). (7)

The accuracy of this multi-level approach mainly depends on size
of the correction term in parentheses and the quality of the small
basis set (which is sometimes chosen too small in order to keep
the computation tractable). The estimated accuracy is about 3–5%
for DE in dispersion-dominated vdW complexes of medium-sized
molecules.

With small basis sets a further quite serious complication
arises because the description of the monomer wavefunctions is
then very incomplete. When forming a complex (i.e., for shorter
intermolecular distances), this can variationally be improved by
utilizing (unused) basis functions of the interacting partner. This
leads to spurious lowering of the interaction energy, referred
to as basis set superposition error (BSSE). This error can be
approximately removed by using the counterpoise procedure
(CP)115,116 which, however, requires two additional computations
and is furthermore not applicable in the intramolecular case. The
CP correction is absolutely necessary for correlated calculations
on small systems and with small (less than triple-zeta) basis sets.
It can be avoided in most DFT calculations with triple-zeta basis
sets, for larger systems, when CBS extrapolations are performed,
or when local correlation methods21 are used. If not mentioned
otherwise, CP corrections are not performed in this work. We will
come back to this point with some examples in Sections 3.2 and
3.3.2, and also refer the reader to the discussion in ref. 31,32.

We exclusively use here AO basis of at least triple-zeta quality,
i.e., for the DFT-D calculations mostly those of Ahlrichs (TZV)117

with two (2d,2p) or three (2df,2pd) sets of polarization functions.
Larger sets or those including diffuse basis functions that are
important in wavefunction-based methods have been found to
be unnecessary in DFT-D calculations32 when errors for DE of
about 5–10% are acceptable. We consider standard GGA-type
density functionals like BLYP118,119 or PBE120 and the new B97-
D.32 The latter is based on a re-parameterization of Becke’s
ansatz from 1997,121 but now explicitly by including the −C6·R−6

dispersion terms. This should by construction avoid double-
counting effects of electron correlation, and the density functional
description is restricted to short-range electron correlations. In
some cases we also present results with the popular B3LYP122,123

hybrid functional. In the SAPT-DFT computations, we employ the
PBE0124 density functional. When functionals are used together
with the dispersion correction, we add the suffix ‘−D’ to the
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functional name in order to distinguish from conventional DFT
computations (occasionally reported to illustrate the effect of
dispersion).

If not mentioned otherwise, the molecular geometries have been
fully optimized. For a detailed discussion of the problems with
weakly bound complexes in this context and possible sources
of numerical error see ref. 31. The interaction energies given
are purely electronic, i.e., do not contain vibrational zero-point
energies. These corrections from De (i.e., −DE) to D0 range from
about 0.3 kcal mol−1 for the weakly bound benzene dimer to e.g.
about 2 kcal mol−1 for the more strongly bound water dimer.

All DFT-D and spin component scaled (SCS)-MP2 compu-
tations were performed with slightly modified versions of the
TURBOMOLE suite of programs.125,126 In all these calculations
the resolution of identity (RI) approximation for the two-electron
integrals127,128 is used, which speeds up the computations by a fac-
tor of 5–15 with an insignificant loss of accuracy. The RI auxiliary
basis sets129,130 are taken from the TURBOMOLE library.131 The
SAPT computations were performed with MOLPRO132 and also
employ RI (density-fitting) approximations as implemented by
Heßelmann, Jansen and Schütz.133

3 Results and discussion

3.1 Comparison of DFT-D and SAPT results

In the SAPT method,39 the interaction energy (up to the second
order) is expressed as

DE = E(1)
es + E(1)

exr + E(2)
ind + E(2)

exr−ind + E(2)
disp + E(2)

exr−disp. (8)

The interaction energy components in eqn (8) are called po-
larization energies and represent different order corrections in
perturbation theory. They have a clear physical interpretation
and correspond to the electrostatic (Coulomb interactions of
charge densities of the unperturbed monomers), exchange (effect
of Pauli repulsion or, equivalently, of anti-symmetrization of
the unperturbed wavefunctions of the monomers), induction
(interactions of induced multipole moments with permanent mo-
ments of the partner, sometimes confusingly called polarization),
exchange-induction (effect of anti-symmetrization of induction
wavefunctions), dispersion (interaction of instantaneous multipole
moments), and exchange-dispersion (effect of anti-symmetrization
of dispersion wavefunctions) interactions, respectively. For conve-
nience and to allow comparison with our partitioning approach
in DFT-D, E(1)

es , E(2)
ind, and E(2)

exr−ind are added to yield Ees, and
E(2)

exr−disp and E(2)
disp added to yield Edisp. The combined discussion

of E(1)
es and E(2)

ind terms as ‘electrostatic’ is very reasonable for the
neutral systems investigated here (as opposed to e.g. cation–p
complexes) because the induction energy is then typically much
smaller compared to E(1)

es and furthermore not very system-specific.
Note further that in SAPT the complex is never treated as a
full system in one computation, and thus this approach has the
big advantage of being free of BSSE. On the other hand, only
complexes with separable fragments can be treated, which excludes
the important intramolecular case. We use SAPT here not as
a computational method for practical applications but want to
compare the interaction components with those from DFT-D to
show that our DFT treatment of weak interactions has a very solid
physical basis.

We partition the interaction energy from a supermolecular
DFT-D computation by the so-called energy decomposition
analysis (EDA) that goes back to the work of Morukuma.134,135

The EDA has been proven to give detailed information about the
nature of chemical bonding,136 as well as for the interactions in
hydrogen-bonded systems137 and in supramolecular structures.35

The formation of bonding between two fragments is divided into
three physically plausible steps. In the first step, the fragment
electronic densities (in the frozen geometry of the super-molecule)
are superimposed, which yields the quasi-classical electrostatic
interaction energy (E(1)

es ). Renormalization and orthogonalization
of the product of monomer wavefunctions yields a repulsive energy
term that corresponds to Eexr. In the final step, the molecular
orbitals are allowed to relax to their final form, which yields the
(usually stabilizing) induction energy, and also includes orbital
and charge-transfer terms that are in part absent in second-order
SAPT. In a manner similar to that above, we add this term to
E(1)

es , which yields then Ees. The dispersion energy term (mainly
E(2)

disp in SAPT) is calculated with the DFT-D approach. The total
interaction energy

DE = Eexr + Ees + Edisp (9)

differs from the true interaction energy only by the energy
necessary to bring the optimum monomer geometries into the
form they have in the super-molecule. This deformation energy is
very small in most cases (<2% of DE) and not discussed further.
The three terms Eexr, Ees, Edisp and the total interaction energy
from EDA and SAPT are compared for three typical (but small)
complexes in what follows.

Fig. 5 and 6 show that (although SAPT and EDA are very
different approaches) not only the total interaction potentials
but also the different parts are quite close to each other. This
holds in particular for Edisp, which is remarkably similar in both
approaches (see Fig. 6). At short distances the effect of the
damping function (which is DFT-D-specific to avoid electron
correlation double-counting and thus has no analogue in SAPT)
is clearly visible. Larger systematic differences between SAPT and
EDA are observed for Eexr and Ees, i.e., the former is higher and the
latter is always lower in EDA. The reasons for this are presently
not clear and deserve more research. Note, however, that besides
an incorrect DFT description of the interaction, other points
must also be considered. For example, the AO basis set used in
SAPT (aug-cc-pVTZ) is not large enough to provide converged
potentials, which is evident from SAPT binding energies that are
in general too small. Also, for more polar systems, higher-order
effects (e.g. charge transfer), which are accounted for in EDA by a
full SCF procedure for the complex, are not considered in second-
order SAPT. Furthermore, one also has to consider that there
is some arbitrariness whether the mixed terms E(2)

exr−ind and E(2)
exr−disp

should be collected in EXR or in ES/dispersion parts, respectively.
In any case, the individual contributions to the interaction

potentials easily allow a classification of the main bonding motifs
in the three complexes. In the NH3 dimer, dispersion is qualitatively
not important and the potential at larger distances is dominated
by Ees, which is a signature for a complex of polar molecules with
some hydrogen-bonding character. The ethene dimer represents
the other extreme where the interaction energy asymptotically is
given by Edisp while Ees is smaller at distances larger than 4 Å. The
CH–p complex between ethene and ethyne is intermediate: Ees is
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Fig. 5 Comparison of interaction potentials and components from
EDA (B97-D/TZV(2df,2pd), marked by stars) and SAPT-DFT(PBE0)/
aug-cc-pVTZ (marked by open circles) computations for the ammonia
dimer (top), the ethene–ethyne (CH–p, middle) complex, and the ethene
dimer (bottom). In all cases fixed (optimized) monomer geometries are
used and the intermolecular distance R is defined by an arrow.

very important near the minimum but Edisp is still significant, and
at larger distances both contribute almost equally to the binding.

3.2 Benchmark sets and model complexes

Before turning to examples of concrete experimental relevance
we want to show how accurate the DFT-D method is for typical

Fig. 6 Comparison of dispersion contributions to the interaction energy
from EDA (B97-D/TZV(2df,2pd)) and SAPT-DFT(PBE0)/aug-cc-pVTZ
computations for the ammonia dimer, the ethene–ethyne complex, and the
ethene dimer.

non-covalent bonding interactions. For this purpose, benchmark
sets of molecular complexes are considered. We first investigate a
set of systems with biochemical relevance and secondly compare
substituted benzene–benzene complexes investigated in detail by
Sinnokrot and Sherrill.11,138

A database dubbed JSCH-2005 with CCSD(T) complete basis
set limit intermolecular interaction energies of 165 non-covalent
complexes has been released recently by Jurecka et al.139 The
majority of complexes are DNA base pairs (128), but 19 amino
acid pairs and 18 other small complexes are included, too. The
size of the complexes varies from six atoms in the water dimer
to 54 atoms in the phenylalanine–tryptophan pair. Also, the
range of interaction energies covered is remarkable: hydrogen-
bonded DNA base pairs have an average interaction energy of
−21 kcal mol−1, stacked base pairs of −8 kcal mol−1, and inter-
strand base pairs of −1 kcal mol−1. For amino acid pairs, the
interaction energies reach values up to −113 kcal mol−1 between
oppositely charged glutamic acid and lysine residues. This set has
recently been investigated successfully with the improved DFT-D
method and several common functionals.37 We present here only
data for a smaller subset of complexes that nevertheless covers
most types of non-covalent interactions in bioorganic chemistry.
The results for interaction energies with B97-D and BLYP-D
methods are shown in Table 1. Note that the reference values also
have an estimated error of 2–3% of DE. A close inspection of the
data in Table 1 reveals that both DFT methods are very accurate.
The root-mean-square deviations of the DFT-D DE values from
the reference are 0.6 and 0.5 kcal mol−1 for the BLYP-D and
B97-D functionals, respectively. For the typical binding energies
of −10 to −20 kcal mol−1, this corresponds to less than 5% of
DE. The differences between the largest positive and the largest
negative deviations are 2.0 and 2.1 kcal mol−1. For the B97-D
functional, the largest positive deviation occurs for the hydrogen-
bonded uracil dimer with 1.2 kcal mol−1, which is only 6% of the
reference value. The largest negative deviation is obtained for the
benzene–H2O complex, and amounts to −0.86 kcal mol−1, which
is the largest relative deviation (26%) in this small dataset found
with B97-D. Similarly small errors (root-mean-square deviations
of about 1 kcal mol−1) have also been observed for the full data
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Table 1 DFT-D/TZV(2df,2pd) intermolecular interaction energies and deviations with respect to reference values (in kcal mol−1)

B97-D BLYP-D Est. CCSD(T)/CBS

No. Complex (symmetry) DE a CP b DE a DEref
c

Hydrogen-bonded complexes
1 (NH3)2 (C2h) −3.72 −0.44 −4.16 −3.17
2 (H2O)2 (Cs) −5.07 −0.68 −5.80 −5.02
3 Formic acid dimer (C2h) −18.25 −0.64 −19.34 −18.61
4 Formamide dimer (C2h) −15.28 −0.58 −16.39 −15.96
5 Uracil dimer (C2h) −19.45 −0.45 −20.73 −20.65
6 2-Pyridoxine–2-aminopyridine −17.13 −0.59 −18.05 −16.71
7 Adenine–thymine WC −16.20 −0.58 −17.19 −16.37

Complexes with predominant dispersion contribution
8 (CH4)2 (D3d) −0.57 −0.02 −0.36 −0.53
9 (C2H4)2 (D2d) −1.55 −0.05 −1.55 −1.51

10 Benzene–CH4 (C3) −1.51 −0.04 −1.37 −1.50
11 Benzene dimer (C2h) −2.67 −0.22 −2.35 −2.73
12 Pyrazine dimer (Cs) −4.07 −0.25 −4.05 −4.42
13 Uracil dimer (C2) −10.02 −0.63 −10.50 −10.12
14 Indole–benzene −4.72 −0.38 −4.55 −5.22
15 Adenine–thymine stack −12.11 −0.80 −12.85 −12.23
Mixed complexes
16 Ethene–ethyne (C2v) −1.73 −0.07 −1.62 −1.53
17 Benzene–H2O (Cs) −4.14 −0.71 −4.16 −3.28
18 Benzene–NH3 (Cs) −2.75 −0.35 −2.66 −2.35
19 Benzene–HCN (Cs) −4.88 −0.08 −4.87 −4.46
20 Benzene dimer (C2v) −2.93 −0.13 −2.76 −2.74
21 Indole–benzene T-shape −6.26 −0.30 −6.16 −5.73
22 Phenol dimer −6.60 −0.55 −7.35 −7.05

a Not corrected for BSSE. b Counterpoise correction. c Estimated CCSD(T)/CBS.139

set of 165 complexes.37 Noteworthy is also the very consistent
description of complexes of different bonding type, e.g. H-bonded
compared to p-stacked structures. The second column of the table
also includes the counterpoise correction for BSSE, which is in
all cases very small (absolute value <1 kcal mol−1) and negligible
for the larger molecules in particular. Typically, the CP correction
with properly polarized triple-zeta basis sets is <5% of DE, which
is on the order of normal basis set effects and which does not
warrant the additional CP computations.

Our second test consists of hetero-dimers of benzene with
substituted benzenes (R = CH3, OH, F, CN) in stacked (face-to-
face) and T-shaped conformations (T with the substituted benzene
as the CH donor and T2 in reverse mode). These systems have been
used to understand the substituent effects on p–p interactions11

(for the analysis of a similar pyridine-substituted benzene model
system see ref. 140,141). The theoretical results of Sinnokrot
and Sherrill (est. CCSD(T)/aug-cc-pVTZ), which contradict the
empirical rules of Hunter and Sanders,142 are fully supported by
the present B97-D calculations. Independent of the nature of the
substituent (electron-donating or -withdrawing) all stacked dimers
are more strongly bound than the unsubstituted benzene dimer.
For the T-shaped arrangements, CH3/OH and F/CN substituents
fall in two classes, as expected when ES effects are dominant (see
below).

As it is evident from Fig. 7, the DFT-D method provides very
accurate binding energies, and not only on an absolute scale; the
substituent effects are also described very well. The systematically
stronger binding provided by B97-D (i.e., all data points are
located below the dashed line by about 0.3 kcal mol−1 on average)
can be traced back to under-binding of the reference method that
used only an aug-cc-pVTZ AO basis. We also decomposed the

Fig. 7 Comparison of binding energies (frozen monomer geometries)
for benzene-substituted benzene (R = H, OH, CH3, F, CN) from
B97-D/TZV(2df,2pd) and estimated CCSD(T)/aug-cc-pVTZ methods.
The dashed line has a slope of unity and an intercept of zero.

binding energies using EDA, and plot in Fig. 8 the energetic
changes compared to the corresponding benzene dimer due to
EXR, ES, and dispersion contributions.

This analysis, that is also relevant to intramolecular cases as in
the triptycene derivatives discussed in Section 3.3.1, reveals the
different nature of binding in stacked and T-shaped structures. In
agreement with the results of Sinnokrot and Sherrill, we see for the
stacked forms that the ES contribution is more stabilizing for all
substituents. The very strong binding for R = CN can be explained
by better ES interactions compared to the other substituents, while

This journal is © The Royal Society of Chemistry 2007 Org. Biomol. Chem., 2007, 5, 741–758 | 749



Fig. 8 Contributions to the interaction energy relative to the benzene
dimer for heterodimers with one mono-substituted benzene (R = OH,
CH3, F, CN) in the stacked (top), T-shaped (middle) and T-shaped(2)
(bottom) configuration. The components to DE are computed by EDA at
the B97-D/TZV(2df,2pd) level using geometries from ref. 11.

the relatively good binding for R = CH3 mainly results from a large
dispersion term. For both T-shaped arrangements (and for T(2)
in particular) one can see the dominant contribution of ES for
the substituent effect, which emphasizes the simple picture of the
interaction of the slightly polar CH donor bond with the p-density
of the acceptor ring. The exceptionally large difference of ES and
EXR components in the T-shaped case for R = CN is mainly
attributed to the short inter-ring distance of 4.9 Å instead of 5.0 Å
as for the other complexes.

Before discussing the results for intramolecular examples, we
want to comment on the commonly used terms ‘p–p stacking’ or
‘p–p interactions’, which are rather mysterious and are often used
when a deeper understanding of the system is missing (see also the
comment in ref. 11). In our opinion, the term p–p stacking should
merely be used as a geometrical descriptor when aromatic or
other unsaturated organic molecules have their molecular planes
in a more-or-less parallel orientation. In essence, our view is that
special p–p interactions in aromatic vdW complexes simply do not
exist (for borderline cases see ref. 143). Let us note first that e.g.
the stacked (parallel-displaced) benzene dimer has an even smaller
binding energy (about −2.8 kcal mol−1) than the completely
saturated pentane dimer (about −3.9 kcal mol−1),144 which has
the same size. This result is incompatible with the assumption
of special p–p interactions. Instead, both systems (unsaturated
and saturated) are typical vdW complexes where dispersion is
absolutely essential for the binding. For larger aromatic systems,
the stacked orientation just minimizes the interatomic distances
for optimal dispersion interactions. Because in this arrangement
not many orbitals overlap (just significantly the p-MOs), the EXR
is quite small (e.g. compared to the pentane dimer or the T-shaped
arrangement), and this helps to compensate for unfavorable ES
effects in this orientation.

The most special property of p-systems compared to saturated
systems is their better interaction with polar molecules, as
illustrated by the comparison of the electrostatic potentials (ESP)
of benzene and pentane in Fig. 9.

It is clearly seen that benzene has pronounced negative regions
above and below the molecular plane that are attributed to the
p-electrons. These regions may serve e.g. as an H-bond acceptor
similar to the lone-pairs of oxygen and nitrogen, which explains
the quite strong binding of benzene with water and ammonia (see
Table 1 and also Section 3.4.1).

Such regions are obviously missing in pentane, which only has
very shallow minima in the ESP of about −3 kcal mol−1 depth.
These plots also help to understand why an EDA of the interaction
energy terms reveals the electrostatics to be more attractive in the
pentane dimer than in the benzene dimer. They further explain why
the arene units in vdW complexes are mostly displaced with respect
to each other, which minimizes the repulsive ES interactions
between the mid-parts of the rings.

3.3 Examples for intramolecular interactions

3.3.1 ‘p-Stacking’ in triptycene derivatives. The equilibrium
between syn- and anti-forms of the triptycene derivative shown
in Fig. 10 have been investigated by Gung et al.145 using NMR
spectroscopy in chloroform. The two conformers differ mainly
by the orientation of the –CH2CPh ring with respect to the R–
PhCOO moiety. The two aromatic units in the syn-form are located
in a stacked, parallel-displaced arrangement. This inter-ring
interaction, which also includes components from the carbonyl
moiety should, however, stabilize the syn-conformer relative to
the anti-conformer; a result which is indeed found experimentally.

The experimental DG values for the anti → syn rotation have
been obtained for different para-substituents R on the PhCOO
moiety (a further substituent on the experimentally investigated
compounds in para-position to the PhCOO group has been
discarded for the calculations). The experimental values of the

750 | Org. Biomol. Chem., 2007, 5, 741–758 This journal is © The Royal Society of Chemistry 2007



Fig. 9 Contour-line plot of the electrostatic potential of pentane (top,
in the CCCCC plane) and benzene (bottom, orthogonal to the molec-
ular plane). Dashed lines indicate a negative (positive-charge-attracting)
potential in steps of ±2 kcal mol−1.

Fig. 10 Structures of the two conformers of the triptycene derivatives.

compounds considered here (R = NO2, CN, F, H, Me) range
from −0.69 kcal mol−1 (stacked form more stable) for R = NO2

to 0.14 kcal mol−1 (R = Me). It is important to note that these
values have been obtained in chloroform solution and thus contain
solvation effects that are not fully considered in the our gas-phase
dielectric continuum model (COSMO146) calculations. While in the
anti-form both arene rings are expected to have an almost complete
solvation shell, this is in part lost in the stacked arrangement.
Thus, compared to the gas phase, the anti-form is stabilized in
solution more than the syn-form. Therefore, our theoretical results

Table 2 Comparison of theoreticala and experimental conformational
energies anti → syn (kcal mol−1). Values in parentheses are those without
the dispersion correction

R DE DE(shifted) b DG(exp) c

NO2 −2.02 (2.44) −1.03 (−0.37) −0.69
CN −1.80 (1.99) −0.81 (−0.82) −0.55
F −1.24 (2.81) −0.25 (0.00) −0.14
H −0.97 (2.83) 0.02 (0.02) 0.02
Me −0.96 (2.55) 0.03 (−0.26) 0.14

a B97-D + COSMO(e = 4.81)/TZV(2d,2p) level. For all atoms of the
triptycene moiety, a smaller SV(d,p) AO basis set is used. b 0.99 kcal mol−1

or −2.81 kcal mol−1 (pure DFT) added (values derived from R = H) to
account for the solvent effect. c In CDCl3, error ±0.05 kcal mol−1 (ref. 145).

are shifted with respect to the experimental value by the difference
in the free solvation enthalpies. This shift is estimated from the
difference between DE(calc) and DG(exp) for R = H, and these
corrected values are shown in the second column of Table 2.
Perusing Table 2, one finds an excellent agreement between the
corrected theoretical values and experiment, i.e., the substituent
effect is described accurately to within ±0.3 kcal mol−1. The
solvent effect of about 1 kcal mol−1 seems reasonable for the loss
of one solvation shell for a substituted benzene in chloroform.
Note that the DFT values without the dispersion correction are
much too high (the anti-form is too stable by 3–4 kcal mol−1), and
furthermore the computed substituent effects are incorrect for
R = NO2 and R = Me. This underlines that only a comprehensive
treatment of all interaction terms including dispersion can provide
quantitatively correct non-covalent interactions. Note also that
much of the success for this system results from the complete DFT-
D geometry optimizations that could be performed. Without the
dispersion correction, very distorted geometries are obtained that
are useless for the evaluation of the conformational energies. This
is an appealing feature of the DFT-D method; the dispersion term
simply can be switched off and the effects on geometry or energy
can be monitored. This is shown for example in Fig. 11 for the
compound with R = H.

Fig. 11 Side view of the optimized structures (B97-D/TZV(2d,2p)-
SV(p,d) of the syn-conformer (R = H) with (left) and without (right)
the dispersion correction. The arrows indicate the distance between the
para-carbons of the two rings (417 and 619 pm) and the carbonyl carbon
atom and the ortho-carbon of the lower ring (309 and 343 pm).

The inter-ring distances that are relevant in the stacking depend
dramatically on the dispersion contribution, as can be seen by
lengthening of the carbonyl-group–ring distance by 34 pm and
between the two para-carbon atoms of more that 200 pm. Without
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the dispersion potential, the strongly repulsive EXR terms are not
compensated for and the entire R–PhCOO moiety tries to avoid the
ring by bending up and undergoing torsion. This example shows
clearly that with conventional functionals qualitatively wrong
geometries can be obtained.

3.3.2 Folding in alkane chains. The folding of molecular
structures from spatially extended linear arrangements to those
that are more dense and space-filling is an important elementary
process in proteins (for a related study on a- vs. 310-helix conversion
see ref. 147). We study the energetic consequences of a simple
folding event here in a non-polar model system in order to monitor
in particular the effects of dispersion.

For small chain lengths, non-branched alkanes CnH2n+2 are most
stable in the linear (L), C2h-symmetric form (n even). In the case of
butane, the relative energy to the higher-lying gauche minimum is
about 0.9 kcal mol−1.148 When the alkane becomes longer, a gauche-
type torsion in the middle of the chain can lead to an arrangement
of two spatially close-lying ‘arms’ of the molecule, as shown for
example for C30H62 in Fig. 12.

Fig. 12 Optimized structures (BLYP-D/TZV(d,p)) of the linear (C2h) and
folded (C2) conformers of C30H62.

The intramolecular interactions between these parts can over-
compensate the linear–gauche energy difference for larger chains,
so that folded alkanes become more stable than linear conformers.
We investigate here the energy difference between linear (L)
and gauche (singly-folded, F) forms DELF as a function of the
chain length (n = 14, 22 and 30). Full geometry optimizations
were performed at the BLYP-D/TZV(d,p) level. Single-point
energies were obtained with several functionals, and the results
are compared to those from the MM3 force field149 and the MP2
method (Table 3). Because the counterpoise correction (important
in MP2 calculations) cannot be applied here, we present MP2
results with two AO basis sets of different size. Note that the
calculation for C30H62 with the large aug-cc-pVTZ AO basis
involves about 3000 orbitals, which is not far from the limit of
what routinely can be carried out on today’s computer hardware.

Having already pointed out in the previous examples the
importance of dispersion for larger molecules, it comes as no
surprise that the effect for these long alkane chains is dramatic.
With HF or BLYP, which neglect vdW interactions completely,
the linear form becomes increasingly more stable as the chain
length grows. For C30H62, the folded conformer is between 20
and 30 kcal mol−1 less stable, which can be mainly attributed to
the intramolecular EXR between the chains. This is drastically
different with methods that account for dispersion interactions,
where even for n = 14 the linear form is slightly more stable. The
crossing point is between n = 14 and n = 22 where the folded forms

Table 3 Energy differencea between linear and folded forms DELF

(in kcal mol−1)

DELF

Method C14H30 C22H46 C30H62

HF b −8.9 −23.8 −30.6
BLYP b −6.9 −16.5 −20.8
BLYP-D b −1.4 6.8 12.7
B97-D b −1.5 4.8 9.8
MP2 c −2.6 1.8 5.9
MP2 d −2.2 3.6 8.8
Force field (MM3) e −5.1 −2.9 12.7

a BLYP-D/TZV(d,p)-optimized structures. A negative sign indicates that
the linear form is more stable. b TZV(2d,2p) AO basis. c TZV(2df,2pd) AO
basis. d aug-cc-pVTZ AO basis. e Fully optimized.

become more stable. For the longest chain, the energy gain due to
folding is very significant and amounts to 5–10 kcal mol−1. Note
also that for the smallest system, HF and BLYP relative energies
deviate by 5–7 kcal mol−1 from the other methods. We also tested
a common force field (MM3)149 for that problem and found a
reasonable but not perfect agreement with the quantum chemical
data. The basis set effect when going from the TZV(2df,2pd) to
the aug-cc-pVTZ AO basis is in the expected direction (stabilizing
the folded forms due to a better description of intramolecular
dispersion) but the changes are relatively small. Tentatively, this
can be explained by a compensating effect of larger BSSE and
missing diffuse functions (to describe dispersion and induction)
in the TZV(2df,2pd) calculation. Note also the almost perfect
agreement between the B97-D and MP2/aug-cc-pVTZ values.

3.3.3 The dimerization of anthracene. The photo-dimeri-
zation of anthracene, a clean and reversible reaction that yields
in a [4 + 4] cycloaddition manner the covalently bound polycyclic
dimer, has been known for about 140 years150 (see Fig. 13). The
dimer is thermally labile at elevated temperatures and reverts back
to the two monomers, which has raised hopes for its use in solar
energy storage devices.

Fig. 13 Dimerization and thermal dissociation of anthracene.

The dissociation energy (De) of the dimer has recently been
investigated in great detail theoretically in ref. 151, in which
experimental solution data have also been discussed. Here we just
want to compare DFT-D data with the most accurate theoretical
reference value of about 9 kcal mol−1 for De that has been
obtained with coupled-cluster and quantum-Monte-Carlo-based
methods.151

The results of calculated De values are summarized in Table 4.
Quite surprisingly for a seemingly simple organic reaction, all
density functionals except PBE-D yield the wrong sign for De,
i.e., two anthracene molecules are computed to be more stable
than the dimer. Particularly striking is the bad performance of
the commonly used BLYP and B3LYP functionals, which lead to
huge and unacceptable errors of 35–45 kcal mol−1. The first hint to
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Table 4 Dissociation energies De (in kcal mol−1) for the anthracene dimer

Methoda AO basis De

B3LYP cc-pVTZ −25.8
BLYP TZV(2df,2pd) −35.3
HF cc-pVTZ −20.7
PBE TZV(2df,2pd) −14.5
BLYP-D TZV(2df,2pd) −9.1
B97-D TZV(2df,2pd) −7.2
PBE-D TZV(2df,2pd) 1.9
SCS-MP2 cc-pVTZ 13.4
MP2 cc-pVTZ 21.4
Best theoretical estimate (ref. 151) 9 ± 3

a Single point calculations using the MP2/TZV(2d,2p) geometry.

the problem of the discrepancy between wavefunction theory (e.g.
SCS-MP2152) and DFT comes from the large dispersion correction
obtained from the DFT-D method. Also, the large De value
obtained by MP2 (which overestimates dispersion interactions
involving p-systems; see e.g. ref. 153,154) is in line with the
interpretation that dispersion is at the heart of the problem. This
can easily be understood by considering the large size of the
molecules (especially the dimer), with many interatomic distances
close to those of typical vdW minima. When used together with
the PBE density functional, the new dispersion correction lowers
the dimer relative to two separated anthracene molecules by
about 16 kcal mol−1, leading to a De value with a correct sign.
Obviously (and ultimately quite understandably) there are strong
intra-molecular vdW interactions in the dimer. From the structure,
one can clearly see that the four outer benzene rings are in a
stacked arrangement (C–C distances are between 270 and 450 pm),
which should add roughly 5–10 kcal mol−1 internal stabilization
compared to two monomers. These effects are entirely due to long-
range electron correlation, and thus are absent in HF and standard
DFT, which both yield a dimer that is too unstable (De < 0), while
all correlated wavefunction methods that accurately include them
yield De > 0. Note that the wrong sign provided by B97-D and
BLYP-D is mainly attributed to an incorrect description of the r–p
transformation and the aromatization energies in the reaction. It
is clear that the DFT-D model can only improve the long-range
part of the dispersion interactions, and in such a case medium
range-correlation effects also play a major role. In any case, this
example shows clearly how important intra-molecular dispersion
effects in reactions with medium-sized molecules really are, and
furthermore, the limits of the simple (orbital-independent) DFT-D
treatment.

3.4 Examples for intermolecular interactions

3.4.1 Complexes of polar aromatic molecules: corannulene.
Van der Waals complexes of polar aromatic molecules are partic-
ularly interesting because of a subtle balance between dispersion
and electrostatic effects. This has previously been investigated for
pyridine34 and azulene36 dimers. One of the most interesting and
exotic hydrocarbons in this context is corannulene. Because of the
(geometrical) ring-strain it is non-planar and has a bowl-shape
form. Furthermore, due to the 20 p-electrons it does not obey
the Hückel 4n + 2-rule. Nevertheless, it benefits from a reasonable
resonance energy stabilization which can be explained by, for
example, the mesomeric structures shown in Fig. 14.

Fig. 14 Resonance structures of corannulene.

Another important characteristic of this molecule is the high
dipole moment of about 2.1 debye (B97-D/TZV(2d,2p) level)
caused by its vaulted shape and the electron distribution that
reflects the significant participation of the aforementioned me-
someric structures. This makes corannulene a candidate for rela-
tively stable vdW complexes, as considered in an early theoretical
study of its dimer by Tsuzuki et al.155

Because this molecule can serve as a model for fullerenes
and nanotubes, we initiated a systematic study of corannulene
complexes with a series of small molecules (H2O, NH3, and CH4).
Corannulene has two distinct binding sites at the inside (i) and
at the outside (o) of the bowl. As can be seen in Fig. 15, the
electrostatic potential of corannulene is more negative on the
outside (minimum value of about −12 kcal mol−1) than on the
inside (minimum value of about −8 kcal mol−1), which should be
compared to the corresponding value of about −10 kcal mol−1

for the similarly sized (but planar) coronene. Tentatively, this can
explain the slight preference for outside-complexes of corannulene
with (electron deficient) transition metal fragments observed in
recent X-ray studies.156 Fig. 16 shows the optimized geometries of

Fig. 15 Contour-line plot of the electrostatic potential of corannulene on
a plane containing the C5 axis through the middle of the molecule. Dashed
lines indicate a negative (positive-charge-attracting) potential. The step
between the contour-lines is −2 kcal mol−1. The global ESP minimum on
the outer side of the bowl is −12.4 kcal mol−1.

Fig. 16 Geometries of inside-bound (top) and outside-bound (bottom)
corannulene complexes with (left to right) water, ammonia, and methane.
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Table 5 Energy contributions to binding from EDA (BLYP-D/
TZV(2d,2p)) for the different corannulene complexes and total binding
energies from DFT-D and SCS-MP2 (all data in kcal mol−1). The values
in parentheses are without the dispersion correction

DFT-D SCS-MP2b

Complex with: a Eexr Ees Edisp DE c DE

CH4 (i) 18.0 −12.5 −11.0 −5.5 (5.5) −4.3
NH3 (i) 16.4 −13.1 −10.5 −7.3 (3.3) −4.8
H2O (i) 11.5 −10.6 −8.6 −7.7 (0.9) −4.6
CH4 (o) 6.0 −3.9 −3.9 −1.8 (2.1) −1.6
NH3 (o) 6.9 −6.3 −3.8 −3.2 (0.6) —
H2O (o) 8.8 −9.5 −4.3 −5.0 (−0.7) —

a Abbreviations: (i): inside; (o) outside. b CP-corrected aug-cc-pVTZ values
using BLYP-D/TZV(2d,2p) optimized geometries. c Fragment deforma-
tion energies not included.

all six complexes considered. In Table 5 the corresponding binding
energies are collected, and also includes SCS-MP2 values for
comparison. This method yields the same trends and qualitative
picture, but the inner values are 2–3 kcal mol−1 smaller than with
DFT-D. A slight overbinding of water and ammonia by DFT-D
is noted even for benzene, which may be attributed to a charge-
transfer character that is slightly too large; this is a general DFT
problem. The SCS-MP2 values on the other hand may be slightly
too small due to basis set incompleteness effects.

The structures of the complexes are geometrically quite similar
to each other. The hydrogen atoms always point towards the
rings, and on the outside the small molecules tend to choose the
‘wall’ rather than the ‘bottom’. Concerning the special shape of
corannulene, all three molecules prefer the inside of the bowl. The
binding energies are 2–4 kcal mol−1 lower than on the outside.
This is somewhat counter-intuitive because one would expect
the outer rim to be a better hydrogen bond donor (cf. Fig. 15).
Note also the intriguing result that NH3 and H2O bind almost
equally strongly (but only inside), while for e.g. benzene the binding
linearly increases from CH4 to NH3 to H2O.

For further understanding an EDA has been performed, which
is also given in Table 5. Obviously, all inside complexes are
stabilized more by dispersion than the outside ones, i.e., at the
pure DFT level the outside is always energetically favored and the
ratio Ees/Edisp is also larger outside (at least for H2O and NH3).
We note in passing that without the dispersion correction only
H2O is bound (at the outside). In agreement with the conclusions
drawn from the ESP plot, the ES contributions on the outside
increase from CH4 to H2O, while they are almost constant for the
inside structures (the larger absolute values are due to the shorter
intermolecular distances). The unusual result that ammonia forms
about the same (or an even stronger) bonds than water can again
be attributed to the large contribution of dispersion that is: i)
more important for NH3 and CH4 than for H2O (decreasing
polarizability); ii) that is clearly stronger inside with more shorter
interatomic contacts; and iii) that overcompensates the relative ES
effects.

3.4.2 Dimerization of large p-systems. Large organic p-
systems have a tendency to form aggregates (dimers) even in
solution under ambient conditions. The corresponding spectro-
scopic consequences in the case of merocyanine dyes have been
investigated in detail by Würthner et al.157 We take here one

of his examples, to show how difficult structure calculations
with other methods are. The formula of the investigated dye is
shown in Fig. 17 together with results from DFT-D and AM1158

optimizations of its dimer.

Fig. 17 Formula of the investigated merocyanine dye and two views of
the optimized structures (B97-D/TZV(d,p), top) and AM1 (bottom).

The monomer has a large dipole-moment of 18.6 debye
(B97-D/TZV(2d,2p)) and thus, the preferred arrangement of
the molecules in the dimer is the anti-parallel orientation with
C i symmetry. The monomers are not fully face-to-face but
slightly displaced relative to each other, as found in many other
aromatic dimer complexes.159 Their relatively strong interaction
is indicated by inter-plane distances between 3.2 and 3.3 Å
and a small distortion of the inherently planar chromophore.
These theoretical results are in qualitative agreement with the
spectroscopic measurements157 as well as (quite crude) MP2/6-
31G(d) optimizations.160

Such large p-systems represent difficulties for simpler computa-
tional methods. Force-fields are in general not applicable because
they can not account for the special unsaturated (delocalized)
character that leads to a very non-uniform charge distribution.
The only alternatives are simpler MO methods like AM1158 but
these fail completely in this case, as it is evident from the very
distorted geometries shown in the bottom of Fig. 17. With AM1
the monomers are shifted with respect to each other, there is a
strong bend along their long axis in order to avoid contact that
is too close and obviously, the system is held together mainly by
Coloumbic forces from the ends of the units.

These failures are understandable by considering the results
from an EDA at the DFT-D level. Due to the polar character of the
merocyanine dye, one intuitively expects ES to be very dominant
for the binding. This picture is more-or-less wrong, i.e., the large
Ees term of −68.8 kcal mol−1 is almost completely quenched by
EXR (65.9 kcal mol−1), such that only a very weak interaction
of −2.9 kcal mol−1 remains at the pure DFT level. The major
part of the very large total interaction energy of −43.8 kcal mol−1

(−40.5 kcal mol−1 including the fragment deformation) is due to
dispersion, which stabilizes the dimer relative to the monomers
by about 41 kcal mol−1. This is absent in AM1, leading to a
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very unbalanced treatment of the interaction terms and finally
to completely unreliable structure predictions. Note also that such
complex p-systems with many heteroatoms lead to complicated ES
interactions that may not be modelled correctly by semiempirical
approximations. In any case, the huge dimerization energy of
−41 kcal mol−1 (about half the dissociation energy of a covalent
C–C bond) is a good example how misleading the term ‘weak
interaction’ is, even for medium-sized systems.

3.4.3 Adsorption of methane on carbon nanotubes. The ad-
sorption of small molecules on graphene sheets and carbon
nanotubes makes these carbon allotropes attractive as potential
gas storage materials. The best estimate for the adsorption en-
thalpy of methane on graphene under low pressure (low coverage)
conditions is −3.0 kcal mol−1.161 The binding on carbon nanotube
material was found to be 76% larger (−5.1 kcal mol−1).162 The
better binding on the tubes was explained by adsorption in
channels of nanotube bundles and interaction with more than
one (outer) cylinder surface.

We have performed DFT-D calculations (B97-D/TZV(d,p)) to
estimate the absolute and relative adsorption energy of methane
on a planar polycyclic aromatic compound (coronene) and on
the surface and in the inner void of a small single-walled carbon
nanotube. Our model tube has a length and diameter of about
15 and 8.4 Å respectively, and comprises 144 carbon atoms. The
adsorption energy of one molecule of CH4, centered on coronene,
amounts to −3.1 kcal mol−1, a value that agrees very well with that
from experiment.

The optimization of the nanotube complexes (see Fig. 18)
revealed adsorption energies of −2.2 kcal mol−1 (DEout

ads) when CH4

is attached to the outer surface of the tube, and −10.1 kcal mol−1

(DE in
ads) when CH4 is located inside the tube. The outside binding

energy is smaller than that for coronene. Interestingly, for the
outside complex, the contribution of DEdisp to DEout

ads is only
−3.8 kcal mol−1, which is less than in the coronene complex
(−5.8 kcal mol−1). For the inside complex, the contribution of
DEdisp to binding is −12.7 kcal mol−1, which explains the large
total interaction energy. Thus, the electrostatic/induction terms
induced by the curved surface seem to be similar inside and
outside, which is corroborated by an ESP plot (not shown). Our
calculations for DEout

ads are in good agreement with experimental
reference enthalpies. That our value is smaller supports the
conclusion from experiment that more than one tube surface is (on
average) involved. Note that without the dispersion correction, the

Fig. 18 Model complex of methane with a [6,6] carbon nanotube
(B97-D/TZV(d,p)). Left: CH4 adsorbed on the outer surface, DEout

ads =
−2.2 kcal mol−1. Right: CH4 located inside the tube, DE in

ads =
−10.1 kcal mol−1.

methane molecule is in any case unbound, and furthermore, the
large difference between inside and outside situations disappears.

3.4.4 Gas hydrates. Clathrate hydrates are inclusion com-
pounds consisting of guest molecules (such as noble gases or
hydrocarbons) in an ordered network of water molecules. Methane
hydrate is of special interest as it may represent a large reservoir
of fossil fuel that could be exploited in the future.

Fig. 19 Model complexes of methane in structure I gas hydrate. Left:
CH4 in a 512 cage ((H2O)20). Right: CH4 in a 51262 cage ((H2O)24).

The most abundant structure of methane hydrate (type I) has
been found to contain a pentagonal dodecahedron (512 cage) and a
tetrakaidecahedron (51262 cage).163 These two cages are used here as
methane hosts in supermolecular DFT-D computations (Fig. 19).
As the two cages have many isomers with various permutations
of internal and external hydrogen atoms, we have proceeded
by optimizing only one arbitrarily chosen isomer of each cage
with an included methane molecule. Subsequently, single point
calculations and structure optimizations of the empty water cage
were performed. We compare the energy of the optimized, empty
water cage with the energy of the methane complex and the energy
of the water cage after CH4 removal (see Table 6). Here, DE is the
binding energy of the guest (compared to the optimized empty
water cage) and DEdisp the corresponding dispersion contribution.

The binding energy is not significantly smaller in the 512 cage
(−6.9 kcal mol−1) than in the (larger) 51262 cage (−7.0 kcal mol−1).
The larger DEdisp in the dodecahedral cage is apparently a
consequence of the smaller void: the average C–O distance is
3.88 Å in CH4@(H2O)20 and 4.27 Å in CH4@(H2O)24. From
solid-state NMR spectra, a population ratio of 0.916 has been
determined for the occupation of 512 vs. 51262 positions.164 The
relative energy difference of methane residing in one of the two
cavities is therefore below 1 kcal mol−1, in agreement with our
data. Furthermore, the energy change of the water network after
optimization of the empty cage (−DEdef) is negligibly small for

Table 6 Energies (B97-D/TZV(2d,2p)) of methane hydrate models
in kcal mol−1

CH4@(H2O)20 CH4@(H2O)24

DE −6.9 −7.0
DEdisp −10.9 −7.4
DEdef(H2O) a 0.07 0.09

a Difference between the energies between empty water cages in the
complex geometry after optimization (Ecpx − Eopt)
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both water cages. One can conclude that the inclusion of CH4

neither significantly distorts the cluster structure, nor influences
the stability of the water cages. Similar binding energies were
reported at the MP2 level (−7 kcal mol−1), but only a double-
zeta basis set without BSSE correction was used.165 It is obvious
from DE and DEdisp that DFT calculations without the dispersion
correction would incorrectly predict an unbound CH4.

4 Conclusions

The present work and the developments of dispersion corrections
to Kohn–Sham density functional theory in particular adheres
to the general ambition of making quantum chemical methods
applicable to major parts of chemistry. We have presented several
examples from organic chemistry, supramolecular chemistry, and
biochemistry where non-covalent interactions are a very important
issue. We have pointed out that an accurate description of the inter-
and intramolecular interactions requires a balanced treatment of
all basic physical processes, i.e., exchange-repulsion, electrostatics,
and dispersion. The inherent problem of current KS-DFT—still
the most promising quantum chemical method for large systems—
is the description of the dispersive (van der Waals) part, and
remedies for this problem have been proposed by many groups. Our
simple approach to add damped −C6·R−6 potentials to the KS-
DFT energy captures the essential physics of the problem, as has
been shown by comparisons to symmetry-adapted perturbation
theory analysis. All in all, the DFT-D method with B97-D or BLYP
functionals yields interaction energies that are very close to the best
CCSD(T) reference data, and there is convincing evidence that this
also holds for the computation of molecular geometries. One of
the reasons for this success is that the complicated, non-additive
and system- (and orientation-) dependent exchange-repulsion,
electrostatic, and induction effects are very accurately described
by the current density functionals. Dispersion forces on the other
hand have a much more isotropic, system-independent (additive)
character, and can thus be described with a rather simple, classical
ansatz.

Currently we see little reason to make the model more com-
plicated, e.g. by inclusion of higher-order terms in the dispersion
correction. This would in any case require more accurate CCSD(T)
reference data that would currently be too computationally
demanding for most of the tested complexes. In the area of
very large unsaturated systems such as carbon nanotubes or
fullerene aggregates, our dispersion correction will very likely
underestimate the interactions due to the large (system-dependent)
polarizabilities of the fragments.

In summary, we have tried to show with some representative
examples how important dispersion effects in chemistry are. These
often so-called ‘weak interactions’ are intuitively underestimated
by most chemists, but may sum up to significant relative contri-
butions, such that their neglect can lead to qualitatively wrong
conclusions. This will become more and more important as the
size of the experimentally investigated molecules increases, because
dispersion effects have a much longer range than the competing
exchange repulsion. We hope that this work (and in particular
the results of the energy decomposition analysis) will contribute
to a better understanding of non-covalent interactions in large
molecules. In addition, it might give experimentalists (and also

theoreticians) a reality check on the importance of dispersion,
and not just for density functional theory.
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Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A.
Berning, D. L. Cooper, M. J. Deegan, O. A. J. Dobbyn, F. Eckert, C.
Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E.
Mura, A. Nicklaß, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J.
Stone, R. Tarroni and T. Thorsteinsson, MOLPRO, version 2006.1:,
A package of ab initio programs, http://www.molpro.net.

133 A. Heßelmann, G. Jansen and M. Schütz, J. Chem. Phys., 2005, 122,
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